I) Auto-test: Espaces vectoriels de dimension finie

1. Donner la définition d'un espace vectoriel de dimension finie. Comment définit-on alors la dimension?

Définition

On dit qu'un K-espace vectoriel E est de dimension fini s'il contient une partie génératrice finie.

Définition

Si E un K-espace vectoriel de dimension finie, on appelle dimension de E le cardinal commun à toutes les bases de E.

O, le note $\dim(E)$ ou $\dim_K(E)$

2. Que dire du cardinal d'une famille libre / génératrice dans un espace vectoriel de dimension finie. Comment montrer qu'une telle famille est une base?

Théorème

Soit E un K-espace vectoriel de dimension fini $= n \in \mathbb{N}^*$

- 1. Si $(\ell_i)_{i \in I}$ est une famille libre alors $\operatorname{card}(I) \leq n$
- 1. Si $(g_j)_{j\in J}$ est une famille libre alors $\operatorname{card}(J) \geq n$

Théorème

Soit E un K-espace vectoriel de dimension fini tq dim $E = n \ (n \in \mathbb{N})$

Soit $(e_1, ..., e_n)$ une famille de cardinal n

Alors:

- 1. $(e_1,...,e_n)$ est libre $\Rightarrow (e_1,...,e_n)$ est une base
- 2. 1. $(e_1,...,e_n)$ est génératrice $\Rightarrow (e_1,...,e_n)$ est une base

3. Citer le théorème de la base incomplète en dimension finie

Théorème

Soient E un K-espace vectoriel de dimension fini $n \in \mathbb{N}^*$ et $(u_1, ..., u_p)$ une famille libre de E tq p < n Alors il est possible de la completer en une base de E.

Plus précisement si $\{E_i\}_{i\in I}$ est une partie génératrice de E alors il existe $\alpha_{p+1},...,\alpha_n$ dans I tq $(u_1,...,u_p,e_{\alpha_{p+1}},...,e_{\alpha_n})$ soit une base de E.

4. Comment montrer en dimension finie que deux sous-espace vectoriel sont égaux?

Théorème

Soit E un K-espace vectoriel de dimension fini

Alors:

- 1. Tout sous-espace vectoriel F de E est aussi de dimension fini dim $F \leq \dim E$
- 2. Si $\dim E = \dim F$ alors F = E
- 5. Citer le théorème du rang. Si $f \in \mathcal{L}(E,F)$ avec E de dimension finie, que dire de $\dim(f(E))$? Que dire de si f est injective?

Théorème (du rang)

Soient E et F des K-espace vectoriel, $f \in \mathcal{L}(E, F)$

On suppose que la source E est de dimension fini.

Alors:

- 1. $\operatorname{Im}(f)$ est de dimension fini et $\dim(\operatorname{Im}(f)) \leq \dim(E)$
- 2. $\dim(\ker(f)) + \dim(\operatorname{Im}(f)) = \dim(E)$

Corollaire (1)

Un endomorphisme injectif conserve ses dimensions.

- 6. SAVOIR REFAIRE : si $f \in \mathcal{L}(E, F)$ avec $\dim(E) = \dim(F)$, alors f est injective ssi f est surjective ssi f est bijective
 - Corollaire (2)

Soient E et F dans K-espace vectoriel de dimension fini tq dim(E) = dim(F).

Si $F \in \mathcal{L}(E, F)$ alors f injective $\Leftrightarrow f$ surjective.

Preuve:

Supposon que f est injective

donc $ker(f) = \{0_E\}$

ainsi $\dim(\ker(f)) = 0$

D'après le théorème du rang, $\dim(E) = \dim(\operatorname{Im}(f)) + \dim(\ker(f))$

Or $\dim(E) = \dim(F)$

Ainsi $\Im(f) \subset F$ et $\dim(\operatorname{Im}(f)) = \dim(F)$ donc $\operatorname{Im}(f) = F$

Donc f est surjective.

Réciproquement, supposons que f est surjective i.e. Im(f) = F

Or d'après le théorème du rang $\dim(E) = \dim(\operatorname{Im}(f)) + \dim(\ker(f))$

Donc dim(E) = dim(F) + dim(ker(f))

or $\dim(E) = \dim(F)$

Donc $\dim(\ker(f)) = 0$

Donc $ker(f) = \{0_E\}$

Donc f est injective.

=0

7. SAVOIR REFAIRE : énoncé et prouver l'égalité de Graussmann.

Théorème (Égalité de Graussmann)

Soient E un K-espace vectoriel de dimension fini, F et G des sous-espace vectoriel de E Alors $\dim(F+G)=\dim(E)+\dim(G)-\dim(F\cap G)$

Preuve:

Appliquons le théorème du rang à une application linéaire. Soit $s: F \times G \to F + G$ $(x; y) \mapsto x + y$

s est bien linéaire.

J'affirme que f est surjective

En effet tout éléments du but F+G s'écrit x+y avec $x\in F$ et $y\in g$ donc $\mathrm{Im}(s)=F+G$

Déterminons le noyau de s

Soit $(x;y)F \times G$

 $(x; y) \in \ker(s)$ ssi $s(x, y) = 0_E$ ssi $x + y = 0_E$ ssi y = -x

donc $\ker(s) = \{(x; -x/x \in F \cap G)\}\$

J'affirme que $\ker(s) \sim F \cap G$

En effet, soit $f: F \cap G \rightarrow \ker(s)$

$$x \mapsto (x; -x)$$

f est surjective car $\ker(s) = \{(x; -x/x \in F \cap G)\}$

f est injective, car $\ker(f) = \{0_E\}$, en effet si $f(x) = (0_E, 0_E)$, alors $(x; -x) = (0_E; 0_E)$ donc $x = 0_E$

Donc f est un isomorphisme de $F \cap G$ dans $\ker(s)$

Donc $\dim(\ker(s)) = \dim(f \cap G)$

On applique le théorème du rang à s

 $\dim(\ker(s)) + \dim(\operatorname{Im}(s)) = \dim(F \times G)$

i.e. $\dim(F \cap G) + \dim(F + G) = \dim(F) + \dim(G)$

D'où l'égalité de Grassmann

8. Comment prouver en dimension finie que $E=F\oplus G$ (où F et G sont des H-espace vectoriel de dimension finie)

Corollaire (de Grassmann)

Soient E un K-espace vectoriel de dimension fini, F et G des sous-espace vectoriel de E.

Alors
$$E = F \oplus G$$
 ssi
$$\begin{cases} F \cap G : \{0_E\} \\ \text{et } \dim(F) + \dim(G) = \dim(E) \end{cases}$$

9. Donner la définition d'un hyperplan dans un esapce vectoriel de dimension finie, puis donner une définition généralisant les hyperplan en dimension quelconque.

Définition

Soit E un K-espace vectoriel de dimension fini On appelle hyperplan de E tout sous espace vectoriel de dimension $\dim(E) - 1$

Définition (généralisé)

Soit E un K-espace vectoriel et H un sous-espace vectoriel On dit que H est un hyperplan de E lorsque H admet pour supplémentaire une droite vectoriel

10. Si $f \in \mathcal{L}(E)$, a-t-on toujours $E = \ker(f) \oplus \operatorname{Im}(f)$?

Théorème du rang : $\dim(\ker(f)) + \dim(\operatorname{Im}(f)) = \dim(E)$

D'après l'égalité de Grassmann : $\ker(f) \oplus \operatorname{Im}(f) = E$ ssi $\ker(f) \cap \operatorname{Im}(f) = \{0_E\}$

Cependant cette contradiction n'est pas toujouts vérifiée.

Contre-exemple : considérons un endomorphisme nilpotent d'ordre 2 i.e. tq $f \circ f = 0_{\mathcal{L}(E)}$ et non nul i.e. $\mathrm{Im}(f) \subset \ker(f)$. Ainsi $\mathrm{Im}(f) \cap \ker(f) = \mathrm{Im}(f) \neq \{0_E\}$

11. Donner $\dim(E \times F)$, $\dim(\mathcal{L}(E))$ et $\dim(E^*)$ si E et F sont des K-espace vectoriel de dimension finie.

$$\dim(E \times F) = \dim(E) + \dim(F), \dim(\mathcal{L}(E)) = \dim(E)^2 \text{ et } \dim(E^*) = \dim(E) \times \dim(E) = \dim(E)$$

12. Donner la définition du rang d'une famille de vecteurs.

Définition

Soient E un K-espace vectoriel, $(a_i)_{i\in I}$ une famille de vecteurs de E.

On dit que cette famille et de rang fini lorsque $\text{vect}\{a_i/i \in I\}$ est de dimension fini.

On définit alors sont rang

$$\operatorname{rg}(a_i)_{i \in I} = \dim(\operatorname{vect}\{e_i/i \in I\})$$

13. Qu'est ce qu'une application linéaire de rang fini. Définir sont rang. Quel est le rapport avec le rang d'une famille de vecteurs?

Définition

Soient E et F des K-espace vectoriel et $f \in \mathcal{L}(E, F)$

On dit que f est de rang fini lorsque Im(f) est de dimension fini. On définit alors sont rang par

$$rg(f) = dim(Im(f))$$

Théorème (liens avec le rang d'une famille)

Si E est de domension fini et à pour base $(e_1,...,e_n)$

Alors $\operatorname{rg}(f) = \operatorname{rg}(f(e_1), ..., f(e_n))$

14. Donner la définition d'un sous-espace affine d'une espace vectoriel. Qu'appelle-ton sa direction?

Définition

On appelle sous espace affine de E tout translaté d'un sous-espace vectoriel de E i.e. $\mathscr{F} \subset E$ est un sous-espace affine de E ssi il existe un sous-espace vectoriel F et un vecteur $a \in E$ tq $\mathscr{F} = t_a(F)$

15. Donner une CNS pour qu'un sous-espace affine soit un sous-esapce vectoriel.

Théorème

- 1. Si \mathscr{F} est un sous-espace ffine de E, alors il existe un unique sous-espace vectoriel \overrightarrow{F} de E tq $\forall b \in \mathscr{F}$, $\mathscr{F} = t_b(\overrightarrow{F})$. Ce sous-espace vectoriel est appellé la direction de \mathscr{F}
- $2. \ \forall (a,b) \in \mathscr{F}^2, \ a-b \in \overrightarrow{F}$
- 3. ${\mathscr F}$ est un sous-espace vectoriel de Essi $0_E\in{\mathscr F}$

16. Soit $\varphi: E \to F$ une application linéaire et $b \in F$ fixé. Résoudre l'équation affine $\varphi(x) = b$

Définition |

Soient E et F des K-espace vectoriel, $\varphi \in \mathcal{L}(E,F)$ et $b \in F$. On dit que l'équation $\varphi(x) = b(\mathscr{E})$ d'inconnu $x \in E$ est une équation affine.

On apelle équation homogéne associé à (\mathscr{E}) l'équation $\varphi(x) = 0_F(\mathscr{E}_H)$ notation pour l'enssemble des solution :

$$-\mathscr{S}_E = \{x \in E/\varphi(x) = b\}$$

$$-\mathscr{S}_{EH} = \{x \in E/\varphi(x) = 0_F\}$$

Résolution de l'équation affine (\mathcal{E})

 1^{er} cas : Si $b \notin \text{Im}(\varphi)$, alors (\mathscr{E}) n'admet pas de solution.

 $2^{\rm nd}$ cas : Si $b\in {\rm Im}(\varphi),$ alors soit $x\in E$ un antécédent de b par φ i.e. $\varphi(x)=b$

Alors:

$$(\mathscr{E}) \quad \Leftrightarrow \quad \varphi(x) = \varphi(x_0)$$

$$\Leftrightarrow \quad \varphi(x) - \varphi(x_0) = O_F$$

$$\Leftrightarrow \quad \varphi(x - x_0) = 0_F \quad \text{car } \varphi \text{ lin\'eaire}$$

$$\Leftrightarrow \quad (x - x_0) \in \ker(\varphi)$$

$$\Leftrightarrow \quad x = y + x_0 \text{ ou } y \in \ker(\varphi)$$

$$\Leftrightarrow \quad x \in t_{x_0}(\ker(\varphi)) = \ker(\varphi) + x_0$$

Ainsi \mathscr{S}_E est un sous-espace affine de E dirigé par $\ker(\varphi)$

L'ensemble des solution d'une équation affine est soit vide, soit un sous-espace affine de E

17. SAVOIR REFAIRE : Soient $(a,b) \in \mathbb{R}^2$. Montrer que l'ensemble des solution de $u_{n+2} = au_{n+1} + bu - n$ (*) est un \mathbb{R} -espace vectoriel de dimension 2.

Définition

On appelle suite récurrente linéaire d'ordre 2 une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ vérifiant une équation de type : $\forall n\in$, $u_{n+2}=au_{n+1}+bu_n$ (\mathscr{E}), $(a,b)\in\mathbb{R}^2$

Soit
$$\varphi$$
 $\mathscr{S}_{\mathscr{E}} \to \mathbb{R}^2$
$$(u_n) \mapsto (u_0, u_1)$$

 φ est linéaire

J'affirme que φ est un isopmorphisme.

En effet si $(\alpha, \beta) \in \mathbb{R}^2$ (but) alors il existe une unique suite vérifiant (\mathscr{E}) tq $\begin{cases} u_0 = \alpha \\ u_1 = \beta \end{cases}$

Donc (α, β) admet un unique antécédent par φ . Donc φ est bijective. Donc $\mathscr{S}_{\mathscr{E}} \sim \mathbb{R}^2$, ainsi $\mathscr{S}_{\mathscr{E}}$ est de dimension fini et $\dim(\mathscr{S}_{\mathscr{E}}) = \dim(\mathbb{R}^2) = 2$

18. Suites récurrentes linéaire d'ordre 2 : préciser les solution réelles de (\star) selon le signe de Δ .

Suite récurrente linéaire du second ordre : $au_{n+2} + bu_{n+1} + cu_n = 0$, a, b, c réels avec $a \neq 0$

On cherche une base de solution sous la forme $u_n = r^n$ où $r \in \mathbb{R}$ (ou \mathbb{C})

D'ou l'équation caractéristique $ar^2 + br + c = 0$ (EC)

On pose $\Delta = b^2 - 4ac$

1. Si $\Delta > 0$: alors (EC) admet deux racines réelles distinctes $r_1 \neq r_2$.

Solutions: $u_n = \lambda r_1 + \mu r_2 \ (\lambda, \mu) \in \mathbb{R}^2$

2. Si $\Delta = 0$ alors (EC) admet une racine double;

Solutions: $u_n = \lambda t^n + \mu n r^n \ (\lambda, \mu) \in \mathbb{R}^2$

3. Si $\Delta < 0$ alors (EC) admet deux racines complexes conjuguées r et \overline{r} , ou $r = \rho_0 e^{i\theta_0}$ $(\rho_0 \ge 0$ et $\theta_0 \in \mathbb{R})$

Solutions: $u_n = \lambda \rho_0^n \cos(\theta_0 n) + \mu \rho_0^n \sin(\theta_0 n) \ (\lambda, \mu) \in \mathbb{R}^2$

19. EDL d'ordre 1 : soient I un intervalle de \mathbb{R} et a, b dans $C^0(I,\mathbb{R})$. Rappeler la méthode de résolution de y' = a(x)y + b(x). Comment fait-on pour trouver une solution particulière?

Soient I un intervalle de $\mathbb R$ et $\overset{\circ}{I} \neq \emptyset$

 $\mbox{Mod\'elisation: soient } E=\Delta^1(I,\mathbb{R}), \, F=\mathscr{F}(I,\mathbb{R}) \mbox{ et } \varphi: \quad E \quad \to \quad F$

$$u \mapsto y' - ay$$

$$(\mathscr{E}) \Leftrightarrow \varphi(y) = b$$

Donc (\mathcal{E}) est une équation affine.

Ici on peut toujours trouver une solution particulière (SP) U par la méthode de la variation de la constante.

On sait aussi que $\ker(\varphi) = \mathrm{vect}\{y_0\}$ ou f ou

Ainsi $\mathscr{S}_{\mathscr{E}} = \{U + \lambda y_0 / \lambda \in \mathbb{R}\}$

C'est une droite affine car $\dim(\ker(\varphi)) = 1$

20. EDL d'ordre 2 : soient a, b, c, des constantes réelles avec $a \neq 0$. Même question pour les solutions réelles de ay'' + by' + cy = d(x) où $d \in C^0(\mathbb{R}, \mathbb{R})$, selon le signe de Δ .

Équation différentielle linéaire du second ordre : aay'' + by' + cy = 0, a, b, c réels avec $a \neq 0$

On cherche une base de solution sous la forme $y: t \mapsto e^{rt}$ où $r \in \mathbb{R}$ (ou \mathbb{C}) D'ou l'équation caractéristique $ar^2 + br + c = 0$ (EC)

On pose $\Delta = b^2 - 4ac$

1. Si $\Delta > 0$: alors (EC) admet deux racines réelles distinctes $r_1 \neq r_2$. Solutions: $y: t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$

2. Si $\Delta = 0$ alors (EC) admet une racine double;

Solutions : $y :\mapsto \lambda e^{rt} + \mu t e^{rt} \ (\lambda, \mu) \in \mathbb{R}^2$

3. Si $\Delta < 0$ alors (EC) admet deux racines complexes conjuguées r et \overline{r} , ou $r = \alpha_0 + i\beta_0$ ($\alpha_0 \in \mathbb{R}$ et $\beta_0 \in \mathbb{R}$) Solutions : $y :\mapsto \lambda e^{\alpha_0 t} \cos(\beta_0 t) + \mu e^{\alpha_0 t} \sin(\beta_0 t)$ (λ, μ) $\in \mathbb{R}^2$